Using Classes

Summary:

When you think in an object oriented (OO) manner, everything is an object and every object is a member of a class. This is a is-a relationship Every object is an instance or instantiation of a class.

Objects inherit attributes from classes. Class objects have attributes and methods associated with them. Class instance methods that will be used with objects usually are not static.

You can send messages to objects, and some methods used in a program must return a message or value.

There are two parts to object-oriented programming: creating the classes of objects from whch the objects will be instantiated, and writing other classes to use the objects.

A class header contains an optional access modifier, the keyword class and any legal identifier you choose fo rthe name of your class.

The class access modifiers are public final, and abstract; you can also choose to specifiy no modifier. Public classes are accessible by all objects, which is the most liberal form of access. Public classes can be extended, or used as a basis for any other class.

The instance variable, or fields, of a class are placed as statements within the class's curly brackets.

Allowable field modifiers include: private, public, friendly, protected, private protected, static, and final. Most class fields are private, which provides the highest level of security.

Information hiding is an important componenet of object-oriented programs; a class's private data can be changed or manipulated only by a class's own methods.

Declaring a class does not create any actual object; you must instantiate any objects that are members of a class.

To create an object that is an instance of a class, you supply a type and an identifier, and then you allocate computer memory for that object using the new operator.

Most programmers place datat fields in some logical order at the befinning of a class. Many programmers prefer to store data fields in alphabetical order.

A constructor method establishes an object and provides specific initial values for the object's data fields. A constructor method always has the same name as the class of which it is a member. You can write your own costructor methods. Constructor methods might not hav a return type.

By default, numberic fields are set to 0(zero), charactar fields are set to Unicode '\u0000', boolean fields are set to false and object type fields are set to null.

Classes

Every thing is an object, and every object is a member of a class.

Inanimate objects are objects: your desk, your calculator, your pencil, your mp3 player, your computer Animate objects are objects too: your cat, your fish, your dog

Every object is a member of a more general class: Your desk is a member of the general class of desks, your cat is a member of the class of cats.

These are is-a relationships Your mp3 player with your music on it is a mp3 player. Your cat Fluffy with the short hair is a cat.

An Object is an Instantiation of a class. Your dog, your desk, your pencil each are one instantiation of a class.

Objects are reusable. Objects Inherit attributes from classes. If you are invited to a birthday party, you know a bunch of things about the party. There will be a location, a start time, a guest list, some food, etc. You don't know exactly who will be on the guest list at the time of your invitation, but you know all parties have guest lists, so this one does as well. All objects have predictable attributes because they are members of certain classes.

Data components are often referred to as instance variables of that class. Class object attributes are often called fields to distinguish them from other variables you might use.

Clas objects have methods associated with them. Every object that is an instance of a class is assumed to possess the same methods. For all parties, you must set the date and time. The methods setDate() and setTime() can do this. Party guests need to know, so they might use the methods getDate() and getTime() to find out. Your graduation party might be myGraduationParty. Some methods used must return a message or value. If a guest uses the getDate() method, they should expect that the method will respond with the requested information.

There are two parts of object-oriented programming.

1. You must create the classes of objects from which objects will be instantiated.

2. You must write other classes to use the objects (and their data and methods).

The same programmer does not need to do both tasks. People can collaborate with object oriented programming in ways that is difficult or impossible with procedural programming. You can write programs that use classes created by others, or you can create a class that others will use to instantiate objects with their own programs. You can call a program or class that instantiates objects of another prewritten class as a class client or class user.

Creating a Class

When you create a class, you must assign a name to the class, then determine what data and methods will be part of the class. The class header will have three parts: optional access modifiers, the keyword class any legal identifier for the name of the class.

public class Employee

Public classes are accessible by all objects. This means that public classes can be extended, or used as the basis for any other class. If you make a good Employee class, you can use it to make other more specific classes, HourlyEmployee and SalaryEmployee. Each one is based on Employee, so you don't have to do everything again in both of the new classes.

Using Instance Methods

Methods that are in a class that has a main that are executed to perform a task are usually static.

Methods that are used to instantiate objects are usually not static.

Methods that are used to instantiate objects are called Instance Methods.

Declaring Objects

Declaring a class does not create any objects. The class is just a description of what the object will be like if any objects are instantiated. The classes are like the blueprint of a building. Just because you have the blueprints of the building does not mean that the building will exist.

You use a two step process to create an object that is an instance of a class.

1. You supply a type and identifier, like when you declare any variable. Dog adog

Dog is the type, adog is the identifier

2. You allocate computer memory for that object. = new Dog()

The equals sign is the assignment operator, a value is being assigned to adog

Dog() is a Constructor Method.

You can do this in one statement: Dog adog = new Dog();

After an object has been instantiated, its methods can be accessed using the objects identifier, a dot and a method call.

Organizing Classes

Use alphabetical order to organize your data fields and methods.

This will put all the get methods together and all your set methods together.

Using Constructors

When you create a class, such as Employee and instantiate an object with a statement like

Employee chauffeur = new Employee(); you are calling a method named Employee() that is provided by the java compiler. A constructor method is a method that establishes an object. The constructor method named Employee establishes one Employee with the identifier chauffeur and provides these specific initial values to the Employee's data fields

· Numberic fields are set to 0 (Zero)

· Charactar fields are set to Unicode '\u0000'

· The boolean fields are set to false

· The object type fields are set to null (empty)

You can override these initial values by writing your own constructor.

